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An analytic-numerical solution to the Navier-Stokes equations is developed for the steady 
laminar flow past a circular cylinder. The method of series truncation is employed to reduce 
the governing partial differential equation to a system of ordinary differential equations, which 
are then numerically integrated. The Reynolds numbers Re, based on the diameter, range from 
0.4 to 40. Beyond that, the flow field should be represented by cosine as well as sine series, 
and is to be treated later. The accuracy of the solution is enhanced by third-order boundary 
conditions at infinity. Quantities of interest such as the drag and pressure coefficients, 
tangential and radial velocities, streamlines, and vorticity lines are computed, plotted, and 
compared with previous results. Applying Shanks’ transformation to each of three successive 
truncations improves the accuracy of the surface quantities. 

1. INTRODUCTION 

The study of laminar flow past an obstacle was pioneered by Stokes [23] who 
could not find the steady solution to satisfy the linearized Navier-Stokes equations. 
This problem, known as Stokes’ paradox, remained unsolved until Oseen [ 191 
considered the inertial terms in the Navier-Stokes equations. Imai [8] improved the 
asymptotic behavior of Oseen flow at a considerable distance from a cylinder 
immersed in uniform flow. Imai’s result completely explained Filon’s well-known 
paradox that the moment of a cylinder immersed in viscous flow is logarithmically 
infinite with increasing extent of the flow region. In two separate studies, Kaplun [ 111 
and Proudman and Pearson [20] generated a procedure to calculate the higher-order 
approximation for low Reynolds numbers by matching two asymptotic expansions, 
one near the cylinder and the other far from the cylinder. Chang [3] investigated the 
same method of solving the flow field at great distances from an object moving 
through a two-dimensional steady incompressible flow. The domain of interest was 
considered to be infinite, and the only boundary for the fluid was the given object. 

One of the earlier numericai solutions of Navier-Stokes equations was investigated 
by Thorn [25], for low Reynolds number flow of water and oil past a circular 
cylinder. Kawaguti [ 121 integrated numerically the full Navier-Stokes equations for 
circular cylinder at Reynolds number 40. He found that steady flow exists even at 
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this high Reynolds number, and that the pressure and drag coefficients conform with 
experimental results. By applying Imai’s asymptotic solutions at infinity and using 
the iterative method of solving finite difference equations, Takami and Keller [24] 
solved the same problem for Reynolds numbers ranging from 1 to 60. Their results 
were in good agreement with available numerical and experimental results. Recently, 
Fornberg [6], using a numerical technique based on Newton’s method, obtained a 
solution up to Reynolds number 300. Another numerical approach to this problem is 
the finite element method by Tuann and Olson [27] for Reynolds numbers from 1 
to 100. 

A useful procedure for solving nonlinear partial differential equations is the 
semianalytic method of series truncation or spectral method. Underwood [28] used 
this method for the steady flow past a circular cylinder for the range of Reynolds 
numbers from 0.4 to 10. The boundary conditions at infinity are from Oseen’s model 
investigated by Van Dyke [29]. Nieuwstadt and Keller [ 151 used the same scheme 
and employed the first term in the Oseen flow obtained by Imai [8] as the improved 
boundary conditions at infinity for Reynolds numbers ranging from 1 to 40. 

The purpose of the present work is to apply the series truncation method with 
third-order boundary conditions developed by Chang to the steady viscous incom- 
pressible flow past a circular cylinder. By series truncation, the governing partial 
differential equation is reduced to a large system of nonlinear ordinary differential 
equations. There are two novel features in their solution. First, Chang’s Navier- 
Stokes solutions at great distances from a finite body transformed to series trun- 
cation, accurate to the third-order, are used as boundary conditions at large distance. 
Second, the two-point boundary value problem is solved by an efficient algorithm 
developed by Ojika [ 161. In addition, application of Shanks’ transformation [22] 
improves the accuracy of the drag and pressure coefficients, surface vorticity, and 
separation angle. 

The computer-plotted results of streamlines, vorticity lines, tangential and radial 
velocities, pressure and drag coefficients, eddy length, and separation angle are 
compared with available experiments and other numerical and analytical solutions. 

2. FLOW EQUATIONS 

The cylinder is placed in an incompressible laminar flow of uniform free-stream 
velocity U, . The origin of the coordinates is fixed at the center of the cylinder. The 
cylinder is long enough so that the change of variables in the direction of the axis of 
the cylinder may be ignored. The cylindrical polar coordinate system of r and 8 are 
employed. The ordinate r is the distance of each point in the flow from the axis of the 
cylinder and 19 represents the polar angle measured from the front stagnation point. 

The vorticity transport equation nondimensionalized with reference to free stream 
and the radius of cylinder is [ 141 

Re 
v4yl++ 
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where the Reynolds number Re, based on the radius a of the cylinder is defined by 

Re, = pU, a/p = U, a/v 

and the stream function ~(r, 6’) is defined such that 

Gr, 0) = -(l/rWw(r, Wae), 

u,(r, f3) = ay(r, f3)p. 

The only nonvanishing component of vorticity can be written as 

The boundary conditions are no-slip conditions at the surface of the cylinder, 

vf(r, 69 = 0, 

(WW(r, 4 = 0, I 
at r= 1, 

and the uniform free stream condition far from the body surface, 

y(r, e) - rm sin e, as r-too. 

(2) 

(3) 

(4) 

(5) 

C-66) 

(7) 

(8) 

Fourth-order partial differential equation (l), with boundary conditions (6~(8), 
describes the flow pattern under consideration. Boundary condition (8) at infinity will 
be replaced by asymptotic behavior of the flow to the third order, as in Section 4. 

3. METHOD OF SERIES TRUNCATION 

The preceding system of (l), (6)-(g) is solved by the analytic-numerical method of 
series truncation. The stream function is expanded into a Fourier sine series 

ty(r, e) = 5 g,(r) sin ne 
?I=1 

(9) 

with functions g,(r), n = 1, 2,... to be determined. In the present study, only the 
Fourier sine series is chosen because of flow symmetry at low Reynolds number. 
Substituting (9) into (1) and then equating like Fourier coefficients, we obtain the 
following system: 

f$ G,(r, g, , g, ,...; Re,) sin if3 = 0, (10) 

where Gi(r, g,, g, ,...; Re,), i = 1, 2 ,... are sets of nonlinear ordinary differential 
expressions. Satisfaction of (10) for arbitrary 0 requires that the coefficient Gi be set 



184 JAFROUDI AND YANG 

to zero for i = 1,2,... . The subscript i in (10) represents the ith order of the problem. 
Thus, the following sets of ordinary differential equations must be solved 
simultaneously: 

G,(r, g, , g, ,...; Re,) = 0, i = 1, 2,... . (11) 

Inside the parentheses are included the functions g(r) and their derivatives to the 
fourth order. 

The effect of the ellipticity of (11) is seen as the first-order problem is governed by 
the ordinary differential equation G, = 0, the second-order problem by G2 = 0, etc.; 
and the problem of each order contains functions dependent upon higher-order 
problems. On the other hand, this effect does not appear in the parabolic or hyper- 
bolic problem. 

In the method of series truncation, the firt-order problem is to solve for 
G,(r, g,, g,,...; Re,) = 0, with g, = g, = ... = 0 and with appropriate boundary 
conditions. The second-order problem is to solve G, = 0 and G, = 0 simultaneously 
with g, =g, = ..a = 0 and with appropriate boundary conditions. The procedure 
continues to higher-order problems until the satisfactory convergence criteria between 
succeeding approximate solutions are obtained. 

The (nth)-order problem leads to tKe system of n fourth-order nonlinear ordinary 
differential equations in terms of g, , g,, etc. as follows: 

2nZ+ 1 2n2 + 1 n4 - 4n2 
gr+;g; - r2 g:: + $ &I+ r4 g” 

+J%$, m /g,[g”‘+.+;g:,.- l +(y2+n)’ &+,+ 2(mr;n)2 EL+.) 

- g;-,+;g:,+ 
( 

1 + (m - n)’ 2(m - n)* 
r2 g’,-, t r3 gm-n 11 

(12) 

with appropriate boundary conditions 

as r+a, 

n = 2, 3 ,..., N, 

n = 2, 3 ,..., N, 

(13) 

(14) 

(15) 

where primes denote differentiation with respect to r, and g, = 0, g-, = -g,. This 
system is to be integrated numerically after being reduced to a system of first-order 
ordinary differential equations. 

The first-order problem leads identically to the Stokes approximation and the 
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associated nonuniformity at infinity, discussed in [30]. This anomaly disappears in 
the higher order approximations. 

Due to limited computer capacity, we consider only six terms in the Fourier series. 
The accuracy of the surface quantities are to be improved by Shanks’ approximation. 

4. THIRD-ORDER BOUNDARY CONDITIONS AT GREAT DISTANCE 

The outer matched asymptotic expansion of the velocity and pressure are assumed 
to have the form [3, 41 

V = i t N, t c3/2V,,2 t .c2 log sVla t s2V2 t ... . (16) 

p = l$ t E3f2& t E2 log E& t E2Z2 t a** ) (17) 

where the V’s and j’s in the right-hand side of (16) and (17) are respectively, first- to 
higher order terms and E is the small parameter 

c=a/R. (18) 

Here R is an artificial length scale. The velocity and related stream function terms are 
given in more detail in [ lo]; 

Rei/’ Ch - 
4(2nr) 1’2 nz, 

O” 8n(--1)“+L sin ne 
n(4n2 - 1) 

(1% 

-2 f, +(-l)“+’ sin&, (20) 

where C, is total drag coefftcient. From (19) and (20), we tind the following 
conditions at infinity for the expansions of ~(r, 0) and u,(r, 0) 

log E 3”2Cb Re, 
g&9 = r + y- 

[ 167~~ 
-~]-(~)1'2c&-~, (21) 

log E 
gm = 1 -7 

3 ‘12Cb Re, 
16n2 

-$I+ (E&q”‘$L, (22) 
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g,(r) = (-1)” [ (2)“’ (4n:Tp, 71 + 21, n = 2,3,..., (23) 

g;(r) = (-l)“+’ 
[( 1 

Re, ‘I2 nC2, 
2rrr (4n2- 1)wr 1 ’ n = 2, 3,... . (24) 

In the actual numerical solution, (21)-(24) are used as the boundary conditions 
imposed at a sufficiently large distance from the surface of the cylinder instead of 
using (15) as mentioned toward the end of Section 2. 

5. DRAG AND PRESSURE COEFFICIENTS AND SEPARATION ANGLE 

The drag coefficient based on frontal area has been the most closely examined flow 
property. The present semianalytic method gives a simple expression for the 
calculation of friction, pressure, and total drag coefficients, 

G, = (WW &‘U)~ (25) 

CD, = - GWe,M”(l) + &‘(l)l~ (26) 

C, = - (27c/Re,) g:“( 1). (27) 

It is seen that only the first term in the Fourier expansion of ~(r, 19) contributes to the 
drag coefficient. Naturally, because of the ellipticity of the equations, the values of 
g,(l) and its derivatives do change as the number of terms in Eq. (9) is increased. 

The pressure coefficient may be calculated by integration of the governing 
equations, and is given by 

C, z (Dimensional(P, - P,)/fpU& 

II dr 

1 1 5 [ + &t(r) - 5 g,(r)] 1 dr. W-9 
PI=1 

The position at which the vorticity changes sign indicates the flow separation 
point. The flow separation angle (measured from the rear stagnation point) is seen in 
the computation to increase with increasing Reynolds number. 
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At the point of separation, vorticity vanishes and the angle of separation 8 = n - 8, 
may be found from the root of (5) when we set r = 1 and w  = 0: 

5 g:(l) sin no= 0, (29) 
PI=1 

where 19, is the separation angle measured from the rear stagnation point. 

6. INITIAL VALUE ADJUSTING METHOD WITH INTERVAL DECOMPOSITION 

Several numerical techniques have been investigated for the solution of the present 
two-point boundary value problem of nonlinear ordinary differential equations. The 
quasilinearization technique introduced by Bellman and Kalaba [2] has some disad- 
vantages. First, the partial derivatives of the system equation (the Jacobian mtrix) 
must be evaluated analytically. Second, selection of the first approximation which 
leads to convergence is, in general, difficult. Third, storage of the previous iteration 
procedure is required. The modified quasilinearization technique developed by Baird 
[ 1] reduces the computer storage, but it is necessay to solve an additional linear 
boundary value problem. The technique of Lentini and Pereyra [ 131 has again the 
same disadvantage as Bellman and Kalaba’s method. 

The initial value adjusting method with interval decomposition for the solution of 
nonlinear multipoint boundary value problems (MPBVP) of nonlinear ordinary 
differential equations by Ojika [ 161, being simple and efficient, has been adopted for 
the present two-point boundary value problem. 

In this technique, the original MPBVP was transformed into a set of initial value 
subproblems. From the solution of each initial value subproblem with a set of slightly 
perturbed initial conditions (from the previous initial conditions), one calculates 
corresponding variations of the nonlinear conditions. Then by the initial value 
adjusting method [ 17, 181, a set of new initial conditions was determined in order to 
satisfy simultaneously the given boundary conditions and continuity conditions at the 
boundary points. The quadratic convergence property of this method has the 
advantage of small computer storage requirements. This method deals directly with 
the original differential equations and the given boundary conditions, so it is not 
necessary to use the solutions of additional linear equations or to evaluate 
analytically the partial derivatives of the given equations. 

Consider the system of n-dimensional no&near ordinary differential equations as 
the nonlinear multipoint, or in the special case, two-point, boundary value problems, 

wwt = Ax, t>, t,<t<t,, (30) 

subject to nonlinear or linear boundary conditions 

g[x(t,h X(b),..., x(&J1 = 0, t, < t, < ... < t,, m > 2, (31) 
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where t is the independent variable and t, @ = 1, 2,..., m) is fixed, x(t) is an n-vector, 
f is an n-vector function twice continuously differentiable with respect to x and 
continuous in t within the interval [t,, tm], and g is an n-vector function twice 
differentiable with respect to each x(t,) @ = 1,2,..., m). 

Instead of solving (30) and (31), we decompose the overall interval [t,, tm] into 
m - 1 subintervals and solve a set of initial value problems 

d k+ id:ip)Q) =f(k+ Ix(P), q, (32) 

kt IX(~)@,+) = k+ lx(~), t,<t<t,+,, p=l,2 ,..., m-l (33) 

with corresponding boundary conditions 

k+‘g= gf k+‘Xyt:),..., k+‘X’*-“(t;-,), k+‘X(m-‘yf;-,)] =o, (34) 

where the superscript k + 1 refers to the (k + 1)th step of the iteration and @) refers 
to the pth subinterval. The plus and minus signs in (34) refer to the right and left 
limits of t, respectively. In addition, the continuity condition must be satisfied at each 
boundary point 

k+ ‘X(p)(t,+) - k+lX(H(fp) = 0, p = 2, 3 ,..., m - 1. (35) 

Equation (32) for the pth subinterval at the kth step of the iteration may be written as 

d;y’“‘(I)/dt = f(fycp), t), ;y’“)(tp+) = kxcpt(t,+) + eej, (36) 

t, <t < to+,, j = 1, 2 ,..., n, p = 1, 2 ,..., m - 1, (37) 

where Jky(“) denotes an n-dimensional vector, E is a small perturbation parameter, and 
ej denotes the jth unit vector given by e, = (0 ,..., l,..., 0). The solution of (36) sets the 
new initial conditions at each subinterval. The procedure will be terminated if the 
convergence condition at the kth iteration defined by 

k, = [“/l”pln(m - l)] I” < E’ (38) 

is satisfied, where the convergence criterion E’ is given by the user and kp is defined 

kg 
kxyf:) - kXyt;) 

k,(m-l)(tm+-,) 1 kX(m-*)(t;--,) 1 9 k = 0, l,... . (39) 
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There are some observations about the method and the algorithm: 

(1) The algorithm given is valid for decomposition at arbitrary points. 

(2) The number of subintervals remains constant throughout the entire 
computations if the convergence criteria can be satisfied. Otherwise all the subin- 
tervals are further decomposed automatically into two equal subintervals. 

(3) The initial value subproblems are solved by the Runge-Kutta-Gill 
method [ 71. 

In all truncations, we let E’ = 10p5; convergence criteria for the subroutines 
MPIVID (multipoint boundary value problems-initial value adjusting method with 
interval decomposition) and GAUSSD (Gauss elimination) are 10m5 and lo-‘*, 
respectively. 

The boundary conditions at infinity were imposed as a sufficiently large distance 
from the surface of the cylinder. This distance changes with the Reynolds number of 
the flow. 

The numerical computations in the present investigation were programmed in 
FORTRAN IV (G-level) for solution in the IBM 370/158 automatic digital computer 
and DEC-10 at the University of Southern California. Typical machine times were 2, 
4, 8, 13, and 19 minutes for second through sixth truncations, respectively. 

7. DISCUSSION OF RESULTS 

Results of the Present Study 

Results have been obtained for Reynolds numbers ranging from 0.4 to 40. An 
outer boundary of 91 times and 41 times the radius of the cylinder for Reynolds 
numbers between 0.4 and 10 and between 15 and 40, respectively, were chosen. As a 
test of the outer boundary, radii roe of 4 1, 6 1, and 9 1 times the radius of the cylinder 
for Re = 10 were selected. It is seen from the results that little change has occurred. 
For consistent results, the outer boundary at infinity was set the same in all trun- 
cations for a given Re. 

In the application of the method of series truncation, the numerical convergence of 
successive truncations is of primary importance. The term convergence in the present 
text refers to the quadratic convergence for the initial value adjusting method 
discussed in Section 6. 

As will be seen later in Fig. 6, in which the drag coefficient is plotted versus 
Reynolds numbers ranging from 0.4 to 40 for the second to sixth truncations, 
additional terms in the Fourier series would yield a more accurate drag coefficient. 
Because of the limited capacity of the computer, adding more terms in the Fourier 
series was not feasible. Applying the nonlinear Shanks’ transformation [22], however, 
the accurate calculation of the drag coefficient for each Reynolds number becomes 
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FIG. 1. Streamlines and equi-vorticity lines from the sixth truncation at Re = 1. 

possible. If S,-, , S,, and S,, , represent three successive approximations to a 
quantity, a revised value is given by 

e,(S,)=(S,+,S,-,-S~)/(S,+,+S,-,-2S,). (40) 

The application of this transformation to each of the three successive truncations 
yields the final value to three significant figures. This transformation is also applied 
to the other surface quantities, but not the field quantities. 

Since the sixth truncation yields the best obtainable approximation without the 
application of Shanks’ transformation, the stream function (9), vorticity (5), and 
velocity profiles have been plotted based on it. The corresponding streamlines and 
equi-vorticity lines are plotted on the top and bottom of the cylinder. Figure 1 shows 
the flow pattern for Reynolds number 1. In the course of computation the bubble 

17 

13 
r 

9 

5 

1 
0 0.4 0.0 1.2 

“e 

17 

13 

9 

5 

1 
0 0.4 0.8 1.2 

FIG. 2. Tangential velocity from the sixth truncation at Re = 1. 
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-1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 
u. 

FIG. 3. Radial velocity from the sixth truncation at Re = 1. 

begins to appear at Re = 7. As the Reynolds number increases, the bubble or recir- 
culating region behind the cylinder grows. At low Reynolds numbers the streamlines 
display fore-and-aft symmetry close to the surface, as in Fig. 1. 

The components of tangential velocity (4) versus angle are plotted in Fig. 2 for 
Re = 1. The figure shows the velocity profiles along the surface and displays fore- 
and-aft symmetry with respect to the top of the cylinder for low Reynolds number. In 
the thin viscous layer, the velocity increases from zero to a maximum then decreases 
to the free stream value. 

The components of radial velocity (3) versus angle for the same Reynolds numbers 
are shown in Fig. 3. The radial velocity components begin at zero on the cylinder 
surface and approach that of the free stream 

u,+-case as r+co. (41) 

In Figs. 4 and 5, Shanks’ extension of the pressure coefficient and surface vorticity 

FIG. 4. Pressure coefficient calculated from the Shanks’ extension at various Reynolds numbers. 
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‘r ,,-Re-40 
1 

-3L -J 

FIG. 5. Vorticity distribution on the cylinder calculated from the Shanks’ extension at various 
Reynolds numbers. 

are plotted versus the angle, as the Reynolds numbers change. 
In Fig. 6 we show the drag coefficient from the second to sixth truncations as well 

as Shanks’ extension for each quantity. 

Comparison of Results 

In Figs. 7 and 8, the predicted surface vorticities from the present study are 
compared with other authors’ numerical solutions at Reynolds numbers 1 and 40, 
respectively. The values plotted in Fig. 7 show very good agreement with Nieuwstadt 
and Keller at Re = 1. In Fig. 8 the results are in good agreement with those of 

16 

0 
3 5 loo 2 5 10’ 2 4 

Re 

FIG. 6. Total drag coefficient versus Reynolds number from the different truncations and Shanks’ 
extension: second (El), third (A), fourth (x), fifth (0), and sixth truncations (t); (*) Shanks’ extension. 
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- -I 

FIG. I. Vorticity distribution on the cylinder from the sixth truncation, Shanks’ extension, and other 
numerical solutions at Re = 1: (0), Nieuwstadt and Keller [ 151; (---), sixth truncation; and (-), 
Shanks’ extension. 

Dennis and Chang [5], Nieuwstadt and Keller, and recent computation by Fornberg 
[6] at Reynolds number 40. 

In Table I the drag coefficient is also compared with existing numerical solutions. 
In Table II the separaion angle is presented and the result is in good agreement with 
numerical solutions of Dennis and Chang, Nieuwstadt and Keller, Takami and 
Keller, and the finite element method of Tuann and Olson for Reynolds numbers 
between 10 and 40. Hamielec and Raal [9], Fornberg, and Underwood show higher 
values. In Fig. 9, the total drag coefftcient of the present study has been compared 
with existing experimental data. The result is in good greement with those of 
Wieselberger [ 3 11, Relf [2 I], and Tritton [26] for high Reynolds numbers and differs 
slightly from those of Tritton at low Reynolds numbers. 

FIG. 8. Vorticity distribution on the cylinder from the sixth truncation, Shanks’ extension, and other 
numerical solutions at Re = 40: (+), Dennis and Chang 15); (0), N’ teuwstadt and Keller [ 151; (A), 
Fornberg 161; (---), sixth truncation; and (-), Shanks’ extension. 



P 

TA
BL

E 
I 

Co
m

pa
ris

on
 

of
 

To
ta

l 
Dr

ag
 

Co
ef

fic
ie

nt
 

fro
m

 
th

e 
Si

xth
 

Tr
un

ca
tio

n 
an

d 
Sh

an
ks

’ 
Ex

te
ns

io
n 

wi
th

 
Ex

ist
in

g 
Nu

m
er

ica
l 

So
lu

tio
ns

 

Re
 

Ta
ka

m
i 

an
d 

Ke
lle

r 
(1

96
9)

 
Un

de
rw

oo
d 

(1
96

9)
 

Ha
m

ie
le

c 
De

nn
is 

Ni
eu

ws
ta

dt
 

Tu
an

n 
an

d 
an

d 
an

d 
an

d 
Ra

al 
Ch

an
g 

Ke
lle

r 
O

lso
n 

(1
96

9)
 

(1
97

0)
 

(1
97

3)
 

(1
97

8)
" 

Fo
rn

be
rg

 
(1

98
0)

 

Si
xth

 
tru

nc
at

io
n 

(p
re

se
nt

) 

0.
4 

- 
1 

10
.2

83
 

2 
6.

63
7 

4 
4.

43
9 

5 
- 

6 
3.

56
5 

7 
3.

30
3 

i0
 

2.
80

 
15

 
2.

26
5 

20
 

2.
01

3 
30

 
1.

71
7 

40
 

1.
53

6 

19
.2

25
 

- 
- 

10
.9

7 
- 

6.
83

 
- 

4.
52

 
- 

- 3.
5 

2.
75

 
- 

2.
27

 
- 

- 
- 

1.
58

8 

- 
- 

- 
19

.2
84

 
- 

10
.3

12
9 

14
.0

13
 

- 
10

.4
38

 
- 

- 
- 

6.
99

1 
- 

- 
- 

- 
4.

99
3 

4.
11

6 
- 

4.
66

1 
4.

43
9 

- 
- 

- 
- 

4.
21

7 
3.

42
1 

3.
41

33
 

3.
84

9 
- 

3.
97

6 
2.

84
6 

2.
82

83
 

3.
17

7 
- 

3.
50

6 
- 

- 
- 

- 
2.

86
6 

2.
04

5 
2.

05
3 

2.
25

3 
2.

00
01

 
2.

64
4 

- 
1.

73
29

 
- 

- 
2.

38
2 

1.
52

2 
1.

55
04

 
1.

67
5 

1.
49

8 
2.

22
4 

Sh
an

ks
’ 

ex
te

ns
ion

 
(p

re
se

nt
) 

P 2 

19
.2

33
 

2 
10

.2
76

 
6.

35
8 

4.
34

2 
5 

3.
82

8 
s 

3.
46

2 
3 

3.
18

6 
2.

64
7 

2.
21

1 
1.

92
7 

1.
60

0 
1.

55
5 

’ 
Fi

ni
te

 
el

em
en

t 
m

et
ho

d,
 

78
 

el
em

en
ts

. 



TA
BL

E 
II 

C
om

pa
ris

on
 

of
 S

ep
ar

at
io

n 
An

gl
e 

fro
m

 t
he

 S
ix

th
 

Tr
un

ca
tio

n 
an

d 
Sh

an
ks

’ 
Ex

te
ns

io
n 

wi
th

 
Ex

is
tin

g 
N

um
er

ica
l 

So
lu

tio
ns

 

R
e 

Ta
ka

m
i 

an
d 

Ke
lle

r 
(1

96
9)

 
Un

de
rw

oo
d 

(1
96

9)
 

H
am

ie
le

c 
D

en
ni

s 
an

d 
an

d 
Ra

al
 

Ch
an

g 
(1

96
9)

 
(1

97
0)

 

N
ie

uw
st

ad
t 

an
d 

Ke
lle

r 
(1

97
3)

 

Tu
an

n 
an

d 
O

lso
n 

(1
97

8)
” 

2 
Si

xt
h 

Sh
an

ks
’ 

$ 
Fo

rn
be

rg
 

tru
nc

at
io

n 
ex

te
ns

io
n 

> 
(1

98
0)

 
(p

re
se

nt
) 

(p
re

se
nt

) 
0 z 

5 
- 

- 
- 

- 
- 

>6
’ 

- 
7 

14
.5

0 
- 

15
.9

O
 

- 
22

.7
” 

22
.6

7”
 

10
 

29
.3

” 
30

.0
0 

32
.4

” 
29

.6
” 

27
.9

6”
 

29
.7

” 
30

.5
5~

 
34

.8
6”

 
15

 
38

.7
O

 
40

.6
” 

- 
- 

- 
43

.0
9”

 
20

 
43

.6
5”

 
- 

43
.7

” 
43

.3
7O

 
44

.1
” 

45
.1

40
 

48
.6

0°
 

30
 

49
.6

” 
- 

52
.7

O
 

- 
49

.3
8O

 
55

.8
0’

 
40

 
53

.5
5”

 
- 

- 
53

.8
“ 

53
.3

4”
 

54
.8

” 
55

.2
1”

 
60

.9
6”

 

11
.7

88
” 

%
 

20
.2

78
” 

C
I 

36
.1

03
” 

s 
41

.3
33

0 
47

.0
32

” 
E 

5 
1.

42
2”

 
E 

0 
Fi

ni
te

 
el

em
en

t 
m

et
ho

d,
 

78
 e

le
m

en
ts

. 



196 JAFROUDI AND YANG 

FIG. 9. Comparison of total drag coefficient versus Reynolds number from the sixth truncation and 
Shanks’ extension with existing experimental data: (x), Relf [21]; (*), W ieselberger [ 3 11; (+), Tritton; 
(---), sixth truncation; and (-), Shanks’ extension. 

8. CONCLUSIONS AND DISCUSSION 

The main objective of the present work has been to investigate the steady viscous 
incompressible flow past a circular cylinder. The series truncation method has been 
applied to the full Navier-Stokes equations. Fourier series expansion (9) has been 
chosen for the stream function and is valid throughout the domain of interest. The 
asymptotic behavior of the flow at infinity has been carefully studied. 

Numerical solutions for the steady viscous incompressible flow past a circular 
cylinder have been presented by the series truncation method for a range of Reynolds 
numbers from 0.4 to 40. Because the sixth truncation solutions yield a better approx- 
imation than the lower truncations (as expected), the flow pattern and tangential and 
radial velocities have been plotted for the sixth truncation. The surface characteristics 
of flow, such as the pressure coefficient, surface vorticity, drag coefficient, and 
separation angle using Shanks’ transformation are found to be in consistent 
agreement with those of Nieuwstadt and Keller [ 151, Dennis and Chang [S], and a 
recent computation by Fornberg [6] for the present Reynolds number range. The 
drag coeficient was also found in good agreement with Tritton’s [26] data. The 
present computation shows that the closed wake length (s) appears at Reynolds 
numbers between 5 and 7. 
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APPENDIX: NOMENCLATURE 

Radius of the cylinder 
Total drag coefficient 
Friction drag coefftcient 
Pressure drag coefftcient 
Diameter of the cylinder 
Pressure 
Pressure at infinity 
Radial coordinate 
Reynolds number 
Wake length 
Free stream velocity 
Radial velocity = - (l/r) ay(r, %)/a% 
Tangential velocity = aw(r, %)/& 
Convergence criterion 
Angular coordinate 
Separation angle 
Viscosity = const 
Kinemtic viscosity = p/p 
Density 
Stream function 
Vorticity 
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